(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
head(cons(X, XS)) → X
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Rewrite Strategy: INNERMOST
(1) InfiniteLowerBoundProof (EQUIVALENT transformation)
The loop following loop proves infinite runtime complexity:
The rewrite sequence
odds →+ cons(s(0), n__incr(incr(odds)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0].
The pumping substitution is [ ].
The result substitution is [ ].
(2) BOUNDS(INF, INF)